2024학년도 9월모의고사 풀이 5

2024학년도 9월 모의고사 수학 미적분 28번 풀이 (240928 풀이)

2024학년도 9월 모의고사 수학 미적분 28번 풀이 (240928 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 2024학년도 9월 모의고사 수학 미적분 28번을 다뤄보겠습니다. 문제 풀이 함수 $f(x)$의 그래프를 그리면 다음과 같다. 이때, $x0$에서의 주기의 절반의 적분값은 $\frac{2}{a}$이다. 이를 구하는 이유는 적분을 했을 때 도함수의 부호 있는 넓이를 원함수의 함숫값의 차로 해석할 수 있기 때문이다. (미적분학의 기본정리) 새로운 함수 $$h(x)= \int_{-a\pi}^x f(t)dt$$ 의 그래프를 그리면 아래와 같다. 이때 $g(x)=|h(x)|$이므로 $g(-a\pi)=h(-a\pi)=0$임을 안다. 그런데 함수 $g(x)$는 미분가능하므로, $$h'(-a\pi)=..

2024학년도 9월 모의고사 수학 14번 풀이 (240914 풀이)

2024학년도 9월 모의고사 수학 14번 풀이 (240914 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 2024학년도 9월 모의고사 수학 14번을 다뤄보겠습니다. 문제 풀이 경계가 되는 $k$의 값이 $3\leq k -8$에서만 생각해 보면) $6$이 함숫값으로 존재할 수도, 그렇지 않을 수도 있는데, 문제의 조건에서 모든 실수 $k$의 값의 범위가 $3\leq k < 4$라는 말은 $x\leq -8$에서 $f(x)=6$을 만족시키는 어떤 실수 $x$가 반드시 존재한다는 말과 같다..

2024학년도 9월 모의고사 미적분 30번 풀이 (240930 풀이)

2024학년도 9월 모의고사 미적분 30번 풀이 (240930 풀이) 안녕하세요 수학올인입니다. 마찬가지로 이번 포스팅은 지난 포스팅들에 이어 2024학년도 9월 모의고사 수학 (미적분) 30번을 다뤄보겠습니다. 문제 풀이 아래 그림처럼 원의 중심을 O라고 하고 두 선분 OP, OB가 이루는 각을 $\alpha$라 하자. 그러면 구하는 $S(\theta)$는 $$S(\theta) = 2\times \frac{1}{2}\times 5\sin\alpha (1+5\cos \alpha)$$ 이다. 한편 $\theta$와 $\alpha$의 관계식을 구하면 $$\tan\theta = \frac{5\sin\alpha}{1+5\cos\alpha}$$ 가 성립한다. 첫 번째 식의 양변을 $\theta$로 미분하면 $$S..

2024학년도 9월 모의고사 수학 22번 풀이 (240922 풀이)

2024학년도 9월 모의고사 수학 22번 풀이 (240922 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 저번 포스팅인 2024학년도 9월 모의고사 수학 15번에 이어서 22번을 풀어보겠습니다. 문제 풀이 조건 (가)에 $x=1$을 대입하면 $f(1)=3$을 얻는다. 이제 (가)의 양변을 미분하면 $$f(x)=f(x)+xf'(x)-4x\quad\Longrightarrow\quad f'(x)=4x$$ 이므로, $f(x)=4x-1$을 얻는다. 한편 $F'(x)=f(x)$, $G'(x)=g(x)$이므로 조건 (나)를 다시 쓰면 $$(F(x)G(x))' = 8x^3 + 3x^2 + 1$$ 이다. 이 식의 양변을 적분하면 $$F(x)G(x)=2x^4 + x^3 + x + k$$ 를 얻는다. (단, $k$는..