2025학년도 수능 수학(미적분) 30번 풀이 (251130 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 수능 수학(미적분) 30번 문제를 다뤄보겠습니다. 문제 풀이먼저 $f(0)=0$이라는 조건으로부터$$\sin b = 0$$을 얻고, 이 말은 곧 정수 $m$에 대하여$$b=m\pi$$꼴임을 알 수 있다. 다음으로 $f(2\pi) = 2\pi a+ b$임을 이용하면$$\sin(2\pi a + b) = 2\pi a + b$$임을 얻는데, 방정식 $\sin x = x$의 실근은 $x=0$뿐이므로$$2\pi a + b = 0$$이어야 함을 얻는다. 따라서 $$a= -\frac{m}{2}$$이고 $m$이 정수이므로 주어진 $a$의 범위를 생각했을 때 가능한 $a$의 값은$$a=1, ..