2025학년도 수능 수학 21번 풀이 (251121 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 수능 수학 21번 문제를 다뤄보겠습니다. 문제 풀이삼차함수 $f(x)$에 대하여 방정식$$f(x)=0$$은 반드시 실근을 적어도 하나는 갖는다. 따라서 문제에서 주어진 삼차함수 $f(x)$에 대하여 $f(t)=0$인 어떤 실수 $t$가 존재함을 알 수 있다. 그런데 모든 실수 $\alpha$에 대해 주어진 극한이 수렴해야 하므로 분자도 $0$으로 가야한다, 즉,$$f(t)=0\quad\Longrightarrow\quad f(2t+1) = 0$$임을 얻는다. 그런데 $\alpha=2t+1$이라고 하고 위 과정을 반복하면 (즉, $2t+1$로의 극한을 생각하면)$$\begin{alig..