2024학년도 10월 모의고사 6

2024학년도 10월 모의고사 미적분 27번 풀이 (241027 풀이)

2024학년도 10월 모의고사 미적분 27번 풀이 (241027 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 2024학년도 10월 모의고사 수학(미적분) 27번 문제를 다뤄보겠습니다. 문제 풀이 조건으로부터 $a_n = a \times r^{n-1}$인데, 무한급수의 합 조건으로부터 $$\frac{\frac{a}{3}}{1-\frac{r}{3}}=4$$ 에서 식을 정리하면 $$a=4(3-r)$$ 이고, $a=4, r=2$이다. 따라서 구하는 무한합은 $\frac{1}{6}$이다. 별다른 아이디어 없이 식만으로 풀리는 문제였습니다.

2024학년도 10월 모의고사 수학 20번 풀이 (241020 풀이)

2024학년도 10월 모의고사 수학 20번 풀이 (241020 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 2024학년도 10월 모의고사 수학 20번 문제를 다뤄보겠습니다. 문제 풀이 우변을 전개하면 $$\begin{align} 2x^2f(x) &= 3f(x)\int_0^x (x-t)dt + 3\int_0^x (x-t)f(t)dt \\ &= \frac{3}{2}x^2f(x) + 3\int_0^x (x-t)f(t)dt \end{align}$$ 이고, 식을 정리하면 $$x^2f(x) = 6\int_0^x (x-t)f(t)dt$$ 이다. 그런데 우변의 $$\int_0^x (x-t)f(t)dt $$ 를 두 번 미분하면 $f(x)$가 된다. 즉, 이는 $f(x)$를 두 번 적분한 식과 같다. 그런데 앞에 ..

2024학년도 10월 모의고사 미적분 29번 풀이 (241029 풀이)

2024학년도 10월 모의고사 미적분 29번 풀이 (241029 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 2024학년도 10월 모의고사 미적분 29번 문제를 다뤄보겠습니다. 문제 풀이 주어진 삼각형은 이등변삼각형이므로 $$\angle \mathrm{ACB} = \frac{\pi}{2}-\frac{\theta}{2}$$ 이다. 따라서 $$\mathrm{CD}=2\cos\left( \frac{\pi}{2}-\frac{\theta}{2} \right) =2\sin\left(\frac{\theta}{2}\right)$$ 이다. 한편 선분 $\mathrm{BC}$의 중점을 $D$라 하면 삼각형 $\mathrm{ABD}$에 대하여 $$\mathrm{AB} = \frac{1}{ \sin\left(\frac..

2024학년도 10월 모의고사 미적분 30번 풀이 (241030 풀이)

2024학년도 10월 모의고사 미적분 30번 풀이 (241030 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 2024학년도 10월 모의고사 수학(미적분) 30번 문제를 다뤄보겠습니다. 문제 풀이 주어진 함수 $f(x)$를 미분하면 $$f'(x)=-e^{-x}(x^2 + (a-2)x + b-a)$$ 이다. 이때 조건 (가)로부터 위의 이차식의 판별식 $$D_1 : (a-2)^2 - 4(b-a) > 0$$ 임을 알 수 있다. 한편 조건 (나)를 보면 함수 $|f(x)|$가 $x=k$를 갖는다면 $$f(k)=0,\quad f'(k)=0$$ 이다. 따라서 방정식 $f(x)=0$의 실근의 개수로 경우를 나누자. i) $f(x)=0$이 서로 다른 두 실근을 가지는 경우 근과 계수의 관계로부터 $$2-2a=3..

2024학년도 10월 모의고사 수학 15번 풀이 (241015 풀이)

2024학년도 10월 모의고사 수학 15번 풀이 (241015 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 2024학년도 10월 모의고사 수학 15번 문제를 다뤄보겠습니다. 문제 풀이 $a_3$을 시작으로 나열하면 아래와 같다. (가장 아래의 경우가 모순인 이유는 조건으로부터 $a_3, a_4$중 적어도 하나는 $4$의 배수여야 하기 때문이다.) 1번 경우) 부등식을 풀면 $45 < a_3 < 57$인데, 가정에서 두 수 $a_3, a_4$는 모두 $4$의 배수이다. 이를 만족시키는 $a_3$은 $52$뿐이다. 2번 경우) 부등식을 풀면 $30 < a_3 < 40$인데, 가정에서 $a_3$은 $4$의 배수이고, $a_4$는 배수가 아니다. 이를 만족시키는 $a_3$은 $32$뿐이다. 3번 경우) ..