5월모의고사 6

2025학년도 5월 모의고사 수학 22번 풀이 (250522 풀이)

2025학년도 5월 모의고사 수학 22번 풀이 (250522 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 5월 모의고사 수학 22번 문제를 다뤄보겠습니다.   문제   풀이가장 먼저 조건을 보면 $f(x) \geq 0$이어야 한다. 또, 조건으로 $g(x)$에 대한 정보를 추려보면i) 임의의 실수 $x$에 대하여$$\lim_{t \to 0}g(x+t) = g(x)$$가 성립한다. ii) $g(x)$는 불연속인 지점이 존재하며, 그 지점은 $f(x)$가 극값을 갖는 지점이다.또, $g(x)$는 연속이 되는 각 구간에서 증가한다. 바꿔 말하면$$g(x) = \begin{cases} f(x) & (f'(x) > 0) \\ -f(x) & (f'(x) \leq 0) \end{cases} $$가..

2025학년도 5월 모의고사 수학(미적분) 30번 풀이 (250530 풀이)

2025학년도 5월 모의고사 수학(미적분) 30번 풀이 (250530 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 5월 모의고사 수학(미적분) 30번 문제를 다뤄보겠습니다.   문제   풀이먼저$$a_n = a\times r^{n-1}$$라고 하고 (가) 조건을 이용하면$$\frac{a}{1-r} = 4$$임을 알 수 있다.  또, $a_n$에 대한 급수가 수렴하므로, $a_n$의 극한값은 $0$일 것이다.이는 곧 $|a_n| \geq \alpha$가 되도록 하는 $n$의 개수는 유한하고무한히 많은 $n$들에 대해 $|a_n|  위 내용을 가지고 수열 $$\frac{a_n}{b_n} = \begin{cases} 1 & (|a_n| 을 관찰해보면, 유한한 항들만 음수가 되며, 나머지 무..

2025학년도 5월 모의고사 수학(미적분) 28번 풀이 (250528 풀이)

2025학년도 5월 모의고사 수학(미적분) 28번 풀이 (250528 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 5월 모의고사 수학(미적분) 28번 문제를 다뤄보겠습니다.   문제   풀이(가) 조건으로부터 $k=\frac{b}{2}$이고 $f\left(\frac{b}{2}\right) = 0$이므로 식을 정리하면$$\tan \frac{b}{2} = \frac{1}{a}$$이다. 이제 (나) 조건을 다시 써보면 방정식$$f'(x)g(x) + f(x)g'(x) = 2f(x)$$의 모든 해의 합을 얘기하고 있는데, $g'(x)$를 계산해보면$$\begin{align} g'(x) &= 2e^{2x-b} \\ &= 2g(x) + 2\end{align}$$가 성립하므로, 이를 위의 식에 대입..

2025학년도 5월 모의고사 수학 15번 풀이 (250515 풀이)

2025학년도 5월 모의고사 수학 15번 풀이 (250515 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 5월 모의고사 수학 15번 문제를 다뤄보겠습니다.   문제   풀이먼저 수열 $a_n$의 모든 항이 자연수임을 보이자. $a_n$으로 가능한 경우는 자연수 $k$에 대하여$$a_n = \begin{cases} 3k \\ 3k+1 \\ 3k+2 \end{cases}\quad (k\in\mathrm{N})$$뿐이므로 각각 해보자. i) $a_n = 3k$인 경우3의 배수이므로 문제에서 주어진 점화식을 이용해서 $3$으로 나눠도 당연히 자연수다. ii) $a_n = 3k+1$인 경우두 번째 점화식을 이용하면$$\begin{align} a_{n+1} &= \frac{(a_n)^2 + 5}..

2025학년도 5월 모의고사 수학 14번 풀이 (250514 풀이)

2025학년도 5월 모의고사 수학 14번 풀이 (250514 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 5월 모의고사 수학 14번 문제를 다뤄보겠습니다.   문제   풀이문제의 조건을 먼저 확인해보면 주어진 식을 만족하려면$$f(k)=g(k)=0$$이어야 함을 알 수 있다. 따라서 방정식$$f(x) = 0$$은 서로 다른 두 실근을 가져야 하고 이는 곧 $x$축과 한 점에서 만남과 동시에 중근도 가진다는 뜻이다. 이제 만나는 지점을 확정해야 하는데, 함수 $f(x)$를$$f(x) = (x-a)(x-b)^2$$라고 써보면, $x=b$에서의 접선의 $y$절편은 반드시 $0$임을 알 수 있다. (접선이 $y=0$이므로.) 그럼 $x=a$에서의 접선의 $y$절편이 $0$이 되도록 해야 하는..

2025학년도 5월 모의고사 수학 13번 풀이 (250513 풀이)

'2025학년도 5월 모의고사 수학 13번 풀이 (250513 풀이)  안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 5월 모의고사 수학 13번 문제를 다뤄보겠습니다.   문제    풀이먼저 $b$가 양수이므로, $b이다. 이제 $x=a$의 위치를 조절할 것인데, 만약 $f(a)>3b$라면 문제의 조건에 모순이다.(교점의 개수가 $2$개가 되는 순간이 존재한다.) 또, $f(a) 따라서 $f(a)=3b$이고 $f(x)$의 개형을 아래와 같이 특정할 수 있다.따라서$$\begin{align} &2^{a+3} + b = 3b \\ &2^{5-a} + 3b = 4b+8 \end{align}$$이 성립하고, 둘을 연립하면 $$a=1, b=8$$임을 얻으므로, 구하는 값은 $9$이다.   전체적으로 ..