2023/06 3

[수학] 도함수가 항상 1이 아니면 많아야 한 개의 고정점을 가짐을 증명

[수학] 도함수가 항상 1이 아니면 많아야 한 개의 고정점을 가짐을 증명 안녕하세요 수학올인입니다. 이번 포스팅에서는 미분가능한 함수 $f(x)$가 모든 실수 $x$에 대하여 $f'(x) \neq 1$이라면 함수 $f(x)$는 많아야 한 개의 고정점을 가짐을 증명하겠습니다. 우선 고정점이 무엇인지 알아야겠죠. 어떤 실수 $t$가 존재해서 $f(t)=t$를 만족하면 점 $(t, f(t))$는 함수 $f(x)$의 고정점입니다. 즉, 고정점은 방정식 $f(x)=x$의 실근이라고 볼 수 있습니다. 따라서 주어진 문제를 모든 실수 $x$에 대하여 $f'(x)\neq 1$이면 방정식 $$f(x)=x$$ 의 서로 다른 실근의 개수는 많아야 1개이다. 로도 바꿀 수 있습니다. 어쨋든, 서론이 길었는데 바로 본론으로 들..

수학 (탐구) 2023.06.03

[수학] 특수한 행렬의 고유치 공식과 그 증명

[수학] 특수한 행렬의 고유치 공식과 그 증명 안녕하세요 수학올인입니다. 이번 포스팅에서는 행렬 중 특수한 행렬의 고유치들을 구해볼 텐데요. 시작하기 전에, (이전 포스팅)의 내용을 알고 있다는 전제로 내용이 전개되니 혹시 읽지 않으셨다면 먼저 읽고 오시면 이해에 도움이 될 겁니다. 먼저 다뤄볼 행렬은 주대각선은 전부 $a$, 나머지 성분은 전부 $b$인 행렬 즉, $$A=\left[\begin{matrix} a & b & \cdots &b & b \\ b & a & & b & b \\ \vdots & & \ddots & & \vdots \\ b & b & & a & b \\ b & b & \cdots & b & a \end{matrix}\right]$$ 의 고유치를 구해보겠습니다. 이전 포스팅의 내용을..

수학 (탐구) 2023.06.02

[수학] 모든 성분이 1인 행렬의 고유치

[수학] 모든 성분이 1인 행렬의 고유치 안녕하세요 수학올인입니다. 이번 포스팅에서는 모든 성분이 1인 행렬의 고유치와 행렬식을 구해보겠습니다. 우선 행렬식의 경우 그 행렬의 모든 고유치의 곱과 같으므로 우리는 고유치에 집중해보겠습니다. 우선 시작하기 전에 모든 성분이 1로만 채워진 $n \times n$ 행렬을 $\textbf {1}_n$이라고 쓰고, 1행렬(Matrix of one) 이라고 부르겠습니다. 즉, $$\textbf{1}_n = \left[\begin{matrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & & 1 & 1 \\ \vdots & & \ddots & & \vdots \\ 1 & 1 & & 1 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{mat..

수학 (탐구) 2023.06.01