2025학년도 6월모의고사 풀이 4

2025학년도 6월 모의고사 수학 22번 풀이 (250622 풀이)

2025학년도 6월 모의고사 수학 22번 풀이 (250622 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 6월 모의고사 수학 22번 문제를 다뤄보겠습니다.   문제   풀이역추적으로 풀 것이다. 위의 규칙을 적용하게 되는 경우는 $n$이 제곱수인 경우이고$2$ 이상 $15$이하의 자연수 $n$ 중 제곱수는 $4, 9$이므로 $4, 5$항 및 $9, 10$항을 중점적으로관찰하자.  위 내용을 기억하며 표를 그려보면 아래와 같다.이때 전체적으로 네 가지의 경우가 있는데, 가장 왼쪽의 숫자대로 번호를 부여하자.   1번 경우)이 경우는 미지수를 소거하기 위해 연립방정식$$\begin{cases} 2a_2 + 3a_3 - 10 = a_2 \\ 2a_3 + 3a_3 - 9 = a_3 \end{..

2025학년도 6월 모의고사 수학(미적분) 28번 풀이 (250628 풀이)

2025학년도 6월 모의고사 수학(미적분) 28번 풀이 (250628 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 6월 모의고사 수학(미적분) 28번 문제를 다뤄보겠습니다.   문제   풀이먼저 $y=f(x)$가 어떻게 생겼을지를 분석해보자. $x함수 $h(x)$를$$h(x) = (x-a-2)^2 e^x$$라고 하면$$h'(x) = (x-a)(x-a-2)e^x$$이므로 함수 $h(x)$는 $x=a$에서 극대가 되고, $x=a+2$에서 극솟값 $0$을 가진다. 이를 바탕으로 함수 $f(x)$의 그래프를 그려보면 다음과 같다.위의 그래프를 확인해보면, $g(t)$가 불연속이 되는 순간은 $y=t$가 아래 그림과 같이함수 $f$의 극대가 되도록 그려지는 경우임을 알 수 있다.한편 함수 $f..

2025학년도 6월 모의고사 수학(미적분) 29번 풀이 (250629 풀이)

2025학년도 6월 모의고사 수학(미적분) 29번 풀이 (250629 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 6월 모의고사 수학(미적분) 29번 문제를 다뤄보겠습니다.   문제   풀이먼저 미분해보면$$\begin{align} f'(x) &= x^2 - 2x + \frac{2x}{x^2 + 1} \\ &= \frac{x^4 - 2x^3 + x^2}{x^2 + 1} \\ &= \frac{x^2 (x-1)^2}{x^2 + 1} = 0\end{align}$$에서 $f'(0)=f'(1)=0$이고, $f'(x) \geq 0$이므로 함수 $f$는 증가한다. 이를 바탕으로 $y=f(x)$의 개형을 대략적으로 그리면 다음과 같다.이제, $y$의 값은 고려하지 않고 (어차피 $y$값은 $a$를 ..

2025학년도 6월 모의고사 수학(미적분) 30번 풀이 (250630 풀이)

2025학년도 6월 모의고사 수학(미적분) 30번 풀이 (250630 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 6월 모의고사 수학(미적분) 30번 문제를 다뤄보겠습니다.   문제   풀이가장 먼저 $n\to\infty$일 때 $a_n \to \infty$인 것은 자명하다.  또, 두 곡선 $y=\tan x$, $y=\frac{\sqrt{x}}{10}$을 동시에 그려놓고 살펴보면$n$의 값이 커질수록 $a_n$은 $y=\tan x$의 $n$번째 점근선에 점점 가까워짐을 알 수 있다. 그 말은 $n$이 커지면 $a_{n+1} - a_n$의 값은 $y=\tan x$의 이웃한 두 점근선 사이의 길이와 같아진다는 말이고따라서$$\lim_{n\to\infty} (a_{n+1} - a_n) =..