문제풀이 77

2025학년도 5월 모의고사 수학 15번 풀이 (250515 풀이)

2025학년도 5월 모의고사 수학 15번 풀이 (250515 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 5월 모의고사 수학 15번 문제를 다뤄보겠습니다.   문제   풀이먼저 수열 $a_n$의 모든 항이 자연수임을 보이자. $a_n$으로 가능한 경우는 자연수 $k$에 대하여$$a_n = \begin{cases} 3k \\ 3k+1 \\ 3k+2 \end{cases}\quad (k\in\mathrm{N})$$뿐이므로 각각 해보자. i) $a_n = 3k$인 경우3의 배수이므로 문제에서 주어진 점화식을 이용해서 $3$으로 나눠도 당연히 자연수다. ii) $a_n = 3k+1$인 경우두 번째 점화식을 이용하면$$\begin{align} a_{n+1} &= \frac{(a_n)^2 + 5}..

2025학년도 5월 모의고사 수학 14번 풀이 (250514 풀이)

2025학년도 5월 모의고사 수학 14번 풀이 (250514 풀이)안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 5월 모의고사 수학 14번 문제를 다뤄보겠습니다.   문제   풀이문제의 조건을 먼저 확인해보면 주어진 식을 만족하려면$$f(k)=g(k)=0$$이어야 함을 알 수 있다. 따라서 방정식$$f(x) = 0$$은 서로 다른 두 실근을 가져야 하고 이는 곧 $x$축과 한 점에서 만남과 동시에 중근도 가진다는 뜻이다. 이제 만나는 지점을 확정해야 하는데, 함수 $f(x)$를$$f(x) = (x-a)(x-b)^2$$라고 써보면, $x=b$에서의 접선의 $y$절편은 반드시 $0$임을 알 수 있다. (접선이 $y=0$이므로.) 그럼 $x=a$에서의 접선의 $y$절편이 $0$이 되도록 해야 하는..

2025학년도 5월 모의고사 수학 13번 풀이 (250513 풀이)

'2025학년도 5월 모의고사 수학 13번 풀이 (250513 풀이)  안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 5월 모의고사 수학 13번 문제를 다뤄보겠습니다.   문제    풀이먼저 $b$가 양수이므로, $b이다. 이제 $x=a$의 위치를 조절할 것인데, 만약 $f(a)>3b$라면 문제의 조건에 모순이다.(교점의 개수가 $2$개가 되는 순간이 존재한다.) 또, $f(a) 따라서 $f(a)=3b$이고 $f(x)$의 개형을 아래와 같이 특정할 수 있다.따라서$$\begin{align} &2^{a+3} + b = 3b \\ &2^{5-a} + 3b = 4b+8 \end{align}$$이 성립하고, 둘을 연립하면 $$a=1, b=8$$임을 얻으므로, 구하는 값은 $9$이다.   전체적으로 ..

2025학년도 3월 모의고사 수학 15번 풀이 (250315 풀이)

2025학년도 3월 모의고사 수학 15번 풀이 (250315 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 2025학년도 3월 모의고사 15번 문제를 다뤄보겠습니다. 문제 풀이 $a_5 = 5$라는 사실로부터 경우를 나눠 역추적을 해보면 다음과 같다. 이상에서 모든 $a_1$의 곱은 $40$이다. 역추적을 통해 간단히 해결하였습니다.

MIT Integration Bee 2024 해설, 정답 및 풀이 (Qualifier)

MIT Integration Bee 2024 해설, 정답 및 풀이 (Qualifier) ■ MIT Integration Bee란? 1981년부터 매년 MIT에서 개최되는 적분 대회입니다. 문제 유형은 부정적분을 계산하는 문제와 정적분을 계산하는 문제로 나뉩니다. 부정적분을 계산하는 문제는 정답을 $x$에 대한 식으로 표현해야 합니다. 정적분을 계산하는 문제는 정답을 계산이 완료된 상수들로 표기해야 합니다. ■ 시간제한은 몇 분인가요? 본시험에선 20분을 제한시간으로 두고 있습니다. ■ 이외의 규칙이 있나요? 문제 및 정답 표기 시 $\log $는 자연로그 ($\ln$)을 나타냅니다. 또, 로그 내부의 절댓값은 표기할 필요가 없으며 적분상수는 생략합니다. 추가로, 문항의 배열과 난이도는 무관합니다. ■ 문..

MIT Integration Bee 2023 해설, 정답 및 풀이 (Qualifier)

MIT Integration Bee 2023 해설, 정답 및 풀이 (Qualifier) ■ MIT Integration Bee란? 1981년부터 매년 MIT에서 개최되는 적분 대회입니다. 문제 유형은 부정적분을 계산하는 문제와 정적분을 계산하는 문제로 나뉩니다. 부정적분을 계산하는 문제는 정답을 $x$에 대한 식으로 표현해야 합니다. 정적분을 계산하는 문제는 정답을 계산이 완료된 상수들로 표기해야 합니다. ■ 시간제한은 몇 분인가요? 본시험에선 20분을 제한시간으로 두고 있습니다. ■ 이외의 규칙이 있나요? 문제 및 정답 표기 시 $\log $는 자연로그 ($\ln$)을 나타냅니다. 또, 로그 내부의 절댓값은 표기할 필요가 없으며 적분상수는 생략합니다. 추가로, 문항의 배열과 난이도는 무관합니다. ■ 문..

MIT Integration Bee 2022 해설, 정답 및 풀이 (Qualifier)

MIT Integration Bee 2022 해설, 정답 및 풀이 (Qualifier) ■ MIT Integration Bee란? 1981년부터 매년 MIT에서 개최되는 적분 대회입니다. 문제 유형은 부정적분을 계산하는 문제와 정적분을 계산하는 문제로 나뉩니다. 부정적분을 계산하는 문제는 정답을 $x$에 대한 식으로 표현해야 합니다. 정적분을 계산하는 문제는 정답을 계산이 완료된 상수들로 표기해야 합니다. ■ 시간제한은 몇 분인가요? 본시험에선 20분을 제한시간으로 두고 있습니다. ■ 이외의 규칙이 있나요? 문제 및 정답 표기 시 $\log $는 자연로그 ($\ln$)을 나타냅니다. 또, 로그 내부의 절댓값은 표기할 필요가 없으며 적분상수는 생략합니다. 추가로, 문항의 배열과 난이도는 무관합니다. ■ 문..

2024학년도 수능 수학(미적분) 29번 풀이 (241129 풀이)

2024학년도 수능 수학(미적분) 29번 풀이 (241129 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 2024학년도 수능 수학(미적분) 29번 문제를 다뤄보겠습니다. 문제 풀이 두 수열 $a_n, b_n$을 $$\begin{align} & a_n = a \times p^{n-1} \\ & b_n = b \times q^{n-1} \end{align}$$ 이라 하자. 그러면 주어진 조건으로부터 $$\frac{ab}{1-pq} = \frac{a}{1-p} \times \frac{b}{1-q}$$ 에서 식을 정리하면 $$2pq = p+q$$ 이다. 이제 두 번째 조건으로부터 $$\frac{3|ap|}{1-p^2} = \frac{7|ap^2|}{1-|p|^3}$$ 에서 식을 다시 정리하면 $$\fra..