전체 글 204

[편입] 2015 가천대학교 편입수학 기출문제 정답 및 해설 (풀이)

[편입] 2015 가천대학교 편입수학 기출문제 정답 및 해설 (풀이) 안녕하세요 수학올인입니다. 이번 포스팅에선 2015년 가천대학교 편입수학 기출문제의 정답과 풀이를 다뤄보겠습니다. 풀이는 전부 제 풀이이며, 따라서 오타나 오류가 있을 수 있습니다. 원본 시험지는 제가 공유하지 않으며, 가천대학교 입학처에서 확인하실 수 있습니다. (가천대학교 입학처 - 편입학 - 공지사항) 2015년도가 아닌 다른 년도의 정답 및 해설은 글 가장 아래에 정리되어 있습니다. 2015 가천대학교 편입학 기출문제 빠른 정답 빠른 정답은 위 사진을 참고해 주시고, 아래는 문항별 풀이입니다. 2015 가천대학교 편입수학 기출문제 1번 풀이 주어진 함수 $f(x)$가 실수 전체의 집합에서 연속이려면 $x=4$에서 연속이면 된다...

[편입] 2014 가천대학교 편입학 수학 기출문제 정답 및 해설 (풀이)

[편입] 2014 가천대학교 편입학 수학 기출문제 정답 및 해설 (풀이) 안녕하세요 수학올인입니다. 이번 포스팅에선 2014년 가천대학교 편입학 기출문제의 정답과 풀이를 다뤄보겠습니다. 풀이는 전부 제 풀이이며, 따라서 오타나 오류가 있을 수 있습니다. 원본 시험지는 제가 공유하지 않으며, 가천대학교 입학처에서 확인하실 수 있습니다. (가천대학교 입학처 - 편입학 - 공지사항) 2014년도가 아닌 다른 년도의 정답 및 해설은 글 가장 아래에 정리되어 있습니다. 2014 가천대학교 편입학 기출문제 빠른 정답 빠른 정답은 위 사진을 참고해 주시고, 아래는 문항별 풀이입니다. 2014 가천대학교 편입학 기출문제 1번 풀이 구하는 극한값은 $$\begin{align}\lim_{x\to 0}\left(2x \ti..

[수학] 포물선으로 둘러싸인 부분의 무게중심

[수학] 포물선으로 둘러싸인 부분의 무게중심 안녕하세요 수학올인입니다. 이번 포스팅에서는 특수한 두 상황의 무게중심에 대해 다뤄보려고 합니다. 아래와 같은 두 상황 1. $y=x, y=x^2$으로 둘러싸인 부분의 무게중심 2. $y=x^2, x=y^2$으로 둘러싸인 부분의 무게중심 에 대해 정리를 해볼 텐데요. 이는 편입수학 시험에 주로 출제되는 회전체의 부피를 구하는 유형에서 시간을 매우 많이 단축시켜줍니다. 그럼 시작해 볼게요. 두 포물선으로 둘러싸인 부분의 무게중심 먼저 무게중심의 정의로부터 두 포물선 $y=x^2, x=y^2$으로 둘러싸인 영역을 $D$라고 하면 $$\bar{x} = \frac{\iint_D xdA}{\iint_D dA},\quad \bar{y}=\frac{\iint_D ydA}{..

수학 (탐구) 2023.09.11

[수학] 모든 성분이 1인 행렬의 고유벡터

[수학] 모든 성분이 1인 행렬의 고유벡터 안녕하세요 수학올인입니다. 이번 포스팅에서는 모든 성분이 1인 행렬의 고유벡터를 구해보겠습니다. 사실 이전에 모든 성분이 1인 행렬의 고유치를 구하는 과정을 정리한 글을 작성했습니다. 궁금하신 분은 (이 글)을 읽어주시고, 이번 포스팅은 더 나아가서 고유벡터까지 구해보겠습니다. 저번 포스팅에서 처럼, 모든 성분이 1로만 채워진 $n\times n$행렬을 $\textbf{1}_n$이라고 쓰고 1행렬 (Matrix of One)이라고 부르겠습니다. 그럼 지난 포스팅의 결과에서 $n \times n$크기의 1행렬 $\textbf{1}_n$의 고유치는 $$\lambda = \underbrace{0, 0, \cdots, 0}_{n-1 \text{개}}, n$$ 임을 확인..

수학 (탐구) 2023.09.10

MIT Integration Bee 2020 해설, 정답 및 풀이 (Qualifier)

MIT Integration Bee 2020 해설, 정답 및 풀이 (Qualifier) ■ MIT Integration Bee란? 1981년부터 매년 MIT에서 개최되는 적분 대회입니다. 문제 유형은 부정적분을 계산하는 문제와 정적분을 계산하는 문제로 나뉩니다. 부정적분을 계산하는 문제는 정답을 $x$에 대한 식으로 표현해야 합니다. 정적분을 계산하는 문제는 정답을 계산이 완료된 상수들로 표기해야 합니다. ■ 시간제한은 몇 분인가요? 본시험에선 20분을 제한시간으로 두고 있습니다. ■ 이외의 규칙이 있나요? 문제 및 정답 표기 시 $\log $는 자연로그 ($\ln$)을 나타냅니다. 또, 로그 내부의 절댓값은 표기할 필요가 없으며 적분상수는 생략합니다. 추가로, 문항의 배열과 난이도는 무관합니다. ■ 문..

2024학년도 9월 모의고사 수학 22번 풀이 (240922 풀이)

2024학년도 9월 모의고사 수학 22번 풀이 (240922 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 저번 포스팅인 2024학년도 9월 모의고사 수학 15번에 이어서 22번을 풀어보겠습니다. 문제 풀이 조건 (가)에 $x=1$을 대입하면 $f(1)=3$을 얻는다. 이제 (가)의 양변을 미분하면 $$f(x)=f(x)+xf'(x)-4x\quad\Longrightarrow\quad f'(x)=4x$$ 이므로, $f(x)=4x-1$을 얻는다. 한편 $F'(x)=f(x)$, $G'(x)=g(x)$이므로 조건 (나)를 다시 쓰면 $$(F(x)G(x))' = 8x^3 + 3x^2 + 1$$ 이다. 이 식의 양변을 적분하면 $$F(x)G(x)=2x^4 + x^3 + x + k$$ 를 얻는다. (단, $k$는..

2024학년도 9월 모의고사 수학 15번 풀이 (240915 풀이)

2024학년도 9월 모의고사 수학 15번 풀이 (240915 풀이) 안녕하세요 수학올인입니다. 이번 포스팅에서는 글을 쓰고 있는 날 기준으로 하루 전에 시행한 2024학년도 9월 모의고사의 수학 15번 문항을 풀어보도록 하겠습니다. 문제 풀이 $\lim_{x\to 3}g(x) \neq g(3)$이므로 함수 $g(x)$는 $x=3$에서 불연속이다. 한편 방정식 $f(x)=0$을 만족시키는 $x$들은 절대 구간의 형태로 분포할 수 없고 이 말은 곧 $f(3)=0$이라는 말과 같다. (왜냐하면 $f(3)\neq 0$이면 $x=3$ 근방에서 항상 $f(x) \neq 0$이므로 $g(x)$가 $x=3$에서 연속이 되기 때문이다.) 한편 $$\lim_{x\to 3} g(x) = \frac{f(6)(f(3)+1)}{..

[수학] 이상적분의 특수한 형태 Frullani integral

[수학] 이상적분의 특수한 형태 Frullani integral 안녕하세요 수학올인입니다. 이번 포스팅에서는 공식으로 쉽게 계산될 수 있는 이상적분의 한 형태인 Frullani integral에 대해 다뤄보겠습니다. 한국어로는 프룰라니 적분이라고 할까요..? 사실 한국어로 말하는 것을 본 적은 없어서, 이 포스팅에서는 영어 그대로 Frullani integral이라고 부르겠습니다. 먼저, Frullani integral의 형태에 대해 알아봐야 할텐데, 아래와 같은 형태를 Frullani integral이라 합니다. Frullani integral 구간 $[0, \infty)$에서 연속이고, $(0, \infty)$에서 미분가능한 함수 $f(x)$가 $$\lim_{x\to\infty} f(x) = f(\i..

수학 (탐구) 2023.09.06

[수학] 역함수 적분에 대한 항등식

[수학] 역함수 적분에 대한 항등식 안녕하세요 수학올인입니다. 이번 포스팅에서는 역함수에 대한 정적분값을 쉽게 구할 수 있도록 도와주는 항등식에 대해서 다뤄보겠습니다. 보통 적분 단원의 문제를 풀다 보면 역함수의 정적분값을 구하는 경우가 많이 생기는데요. 이 항등식을 적절히 이용한다면 그런 문제에서 아주 많은 도움이 될 수 있을 것입니다. 정리 닫힌구간 $[a, b]$에서 증가 또는 감소하는 연속함수 $f(x)$에 대하여 다음이 성립한다. $$\int_a^b f(x)dx + \int_{f(a)}^{f(b)} f^{-1}(x)dx = bf(b)-af(a)$$ 증명 다음 그림을 생각해 보자. 등식의 좌변은 두 적분의 합(부호 있는 넓이)가 되며, 등식의 우변은 큰 정사각형의 넓이에서 작은 정사각형의 넓이를 ..

수학 (탐구) 2023.09.04

[수학] 도함수가 항상 1이 아니면 많아야 한 개의 고정점을 가짐을 증명

[수학] 도함수가 항상 1이 아니면 많아야 한 개의 고정점을 가짐을 증명 안녕하세요 수학올인입니다. 이번 포스팅에서는 미분가능한 함수 $f(x)$가 모든 실수 $x$에 대하여 $f'(x) \neq 1$이라면 함수 $f(x)$는 많아야 한 개의 고정점을 가짐을 증명하겠습니다. 우선 고정점이 무엇인지 알아야겠죠. 어떤 실수 $t$가 존재해서 $f(t)=t$를 만족하면 점 $(t, f(t))$는 함수 $f(x)$의 고정점입니다. 즉, 고정점은 방정식 $f(x)=x$의 실근이라고 볼 수 있습니다. 따라서 주어진 문제를 모든 실수 $x$에 대하여 $f'(x)\neq 1$이면 방정식 $$f(x)=x$$ 의 서로 다른 실근의 개수는 많아야 1개이다. 로도 바꿀 수 있습니다. 어쨋든, 서론이 길었는데 바로 본론으로 들..

수학 (탐구) 2023.06.03